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What is Data Assimilation ? 

• Models give a complete description of the atmospheric, 
but errors grow rapidly in time

• Observations provide an incomplete description of the 
atmospheric state, but bring up to date information 

• Data assimilation combines these two sources of 
information to produce an optimal (best) estimate of the 
atmospheric state

• This state (the analysis) is used as initial conditions for 
extended forecasts. 



• Model

• Observations

• Assimilation algorithm

The assimilation system:
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Assimilation Algorithm
Combining information 

• At NCMRWF we employ variational data assimilation methods 

• These are based upon the maximum likelihood combination of 
observations and background information 

• It can be shown that the most probable state of the atmosphere given a 
background Xb and some observations Y is that which minimises a cost 
or penalty function J

• The solution obtained is optimal in that it fits the prior (or background) 
information and measured radiances respecting the uncertainty in 
both.



National Centre for Medium Range Weather Forecasting (NCMRWF), NOIDA, India

Observations at irregular location Regular Grid Point

Objective Analysis



Objective analysis   

Polynomial expansion (Panofsky, 1949)
Coefficients determined by least squares fit

Gilchrist and Cressman (1954)
Also polynomial expansion, but used a trial field (short-range 
forecast)
fitting done locally rather than over full domain

Bergthorsson and Doos (1955)
Analyzed differences between observations and a trial field
First attempt at deriving optimal weights using statistics



Optimal (statistical) interpolation (OI)
Rutherford 1972

Three-dimensional variational analysis
Spectral statistical interpolation (NMC, 1991)
ECMWF, 1996

4-Dimensional Variational Method (4D-Var)

Kalman Filter (KF, with approximation)

Ensemble Kalman Filter (EnKF)

Hybrid Method (4D-Var + EnKF)



Different popular techniques of objective analysis are :

 Polynomial interpolation or surface fitting method

Successive correction method (Cressman Analysis)

Statistical Interpolation :OI (Optimum Interpolation)

Variational Analysis



Variational Assimilation
The cost function J (X)

model state

observations

background error
covariance

observation error
covariance

observation operator 
(maps the model state to the 

observation space)



The cost function components (Jb) 

Fit of the solution to the background estimate of the
atmospheric state weighted inversely by the
background error covariance B



Fit of the solution to the observations weighted
inversely by the measurement error covariance R
(observation error + error in observation operator H)

The cost function components (JO) 



Various implementations of the 
assimilation algorithm

• 1D-Var

• 3D-Var

• 4D-Var



One dimensional variational analysis 
(1D-Var) 

1D model state profile

vector of measured 
radiances at one location

observation Operator 
= radiative transfer model
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Three dimensional variational analysis 
(3D-Var) 

3D model state

global vector of 
measured radiances

observation operator 
= spatial interpolation + 
radiative transfer model
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4D model state

global time windows of 
measured radiances

observation operator 
= spatial interpolation +  forecast model 

+ radiative transfer model
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Four dimensional variational analysis 
(4D-Var) 



The key elements of a satellite 
data assimilation system



• observation operator 

• background errors

• observation errors

• bias correction

• data selection and quality control

Key elements of a data assimilation system



Observation operator

• The observation operator must map the model state at 
beginning of the assimilation window (t=0) to the 
observation time and location.

• In the direct assimilation of radiance observations, the 
observation operator must incorporate an additional step 
to compute radiances from the model state variables.

• This means that radiance observations are significantly 
more computationally expensive than conventional 
observations



Observation operator

1) Time evolution of forecast model field to OBS time

X t=0
X t=t(obs)



Observation operator

2) Spatial interpolation of model grid to OBS location



Observation operator

3) Radiative transfer calculation from model state at that 
location to radiances at that location

RT Model



Observation operator (RT component)

• The RT model should produce an accurate simulation of 
the satellite radiance from the model state, based upon 
the best knowledge of the instrument characteristics and 
up to date spectroscopic information.

• However, the model must be fast enough to process huge 
quantities of data in near real time

• In addition, the adjoint and tangent linear versions of the 
RT model are required by the algorithm that minimises 
the cost function

• Ideally the same RT model should be used for all satellite 
sensors being assimilated 



Background errors (and vertical resolution)

• The matrix B must accurately describe errors in the 
background estimate of the atmospheric state. It 
determines the weight given to the background 
information.

• A very important aspect for the assimilation of near-nadir 
viewing satellite radiances are the vertical correlations 
that describe how background errors are distributed in the 
vertical (sometimes called structure functions)

• These are important because satellite radiances have 
very limited vertical resolution



• Innovation departure statistics – i.e. comparison of Xb

with radiosondes (best estimate of truth but limited 
coverage)

•comparison of forecasts differences  e.g. 48hr and 
24hr (so called NMC method)

•comparison of ensembles of analyses made using 
perturbed observations

None of these approaches are perfect!

How do we determine 
background errors?



What do we want our background 
errors to do ?

• Describe our confidence in the background estimate 
of the atmosphere Xb

• Describe how background errors are correlated with 
each other:
- vertically (between different model levels)
- spatially (between different grid points)
- between variables (T / Q / O3 / wind)
- impose balance (e.g. geostrophic) 

• They should be data and flow dependent!



Background errors and radiance 
assimilation

• The physics of radiative transfer mean that radiances 
measured by downward looking satellite sounders have 
very poor vertical resolution (they are broad vertical 
averages)

• If we wish to correct errors in the background with 
radiance observations (in DA) the vertical structure of 
these errors is very important.

• This structure is described by the vertical correlations in 
the background error covariance



“Difficult” to correct “Easy” to correct 

WEIGHTING FUNCTION WEIGHTING FUNCTION

POSITIVE
(WARM) 
ERRORSNEGATIVE

(COLD) 
ERRORS

Background errors (and vertical resolution)



Can we quantify the 
impact of vertical 
background error 

correlations on analysis 
accuracy ?



model state

observations

background error
covariance

observation error
covariance

observation operator 
(maps the model state to the 

observation space)

…a helpful linear analogue … 

…when we minimise J(x) … 
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Kalman gain           x

It can be shown that the state that minimizes the cost function 
is equivalent to a linear correction of the background using 
the observations:  

…where the correction is the Kalman Gain Matrix multiplied 
by the innovation vector (observation minus radiances 
simulated from the background) 

...we correct background errors

correction term =

innovation
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error reduction

Furthermore when we apply this correction we produce a 
state (the analysis) that is more accurate than the background. 
We can compute the improvement as an error reduction of 
the analysis error (A) compared to the error in the background 
(B) … 

…and reduce the error … 

So we can look at how A performs for two different types of 
vertical correlation present in B 



Sharper error correlations 
in the Tropics

Broader vertical correlations 
in the mid-latitudes

700hPa T error

Sharp and broad vertical correlation 



Error standard deviation (K) Error standard deviation (K)

Tropical background errors
(sharp vertical correlation)

Only a small 
improvement over 

the background

a larger 
improvement over 

the background

Mid-Lat background errors
(broad vertical correlation)

background error ---- Analysis error 

Sharp and broad vertical correlation 



Error standard deviation (K) Error standard deviation (K)

Tropical background errors
(sharp vertical correlation)

Only a small 
improvement over 

the background

a larger 
improvement over 

the background

Mid-Lat background errors
(broad vertical correlation)

background error ---- Analysis error 

Sharp and broad vertical correlation 

So the same satellite can have a big impact or small impact depending on how the
background errors are distributed



Observation errors:

• These determine the weight we give to the radiance 
observations. The observation error must account for 
random uncertainties in the observation operator (e.g. RT 
model), errors in data screening (e.g. residual clouds) and 
errors of representativeness (e.g. scale mismatch).

• R is a matrix, often specified through the square root of 
the diagonals (“σO”) and a correlation matrix (which can 
be the identity matrix).

• It is important to model both the magnitude of errors 
(diagonals of R) and any inter-channel correlations

• Wrongly specified observation errors can lead to an  
analysis with larger errors than the background!



Observation errors:

• Specifying the correct observation error produces an 
optimal analysis with minimum error.

background  error

true OBS 
error

optimal 
analysis

specified OBS 
error

analysis 
error



Observation errors:

• Over-estimating the OBS error degrades the analysis, 
but the result will not be worse than the background.

analysis 
error

specified OBS 
error

background  error

true OBS 
error

Sub-optimal 
analysis



Observation errors:

• Under-estimating the OBS error degrades the analysis, 
and the result can be worse than the background!

analysis 
error

specified OBS 
error

background  error

true OBS 
error

Sub-optimal 
analysis



What to do when there are error correlations?

• Thinning
• reduce observation density so that error correlations are not 

relevant.

• Error inflation
• use diagonal R with larger σO than diagnostics suggest.

• Take error correlations into account in the assimilation



Spatial error correlations and thinning
• If the observations have spatial error correlations, but these are 

neglected in the assimilation system, assimilating these 
observations too densely can have a negative effect. 

 Practical solution: Thinning,
ie select one observation 
within a “thinning box”.

 Using fewer observations 
gives better results!



Bias correction:

Systematic errors must be removed otherwise biases will 
propagate in to the analysis (causing global damage in the 
case of satellites!).  A bias in the radiances is defined as: 

bias  =  mean [ Yobs – H(Xtrue) ]

Sources of systematic error in radiance assimilation include:

• instrument error (scanning or calibration)

• radiative transfer error (spectroscopy or RT model)

• cloud / rain / aerosol screening errors



nadir
limblimb

AMSU-A channel 14

biases that vary depending on the 
Scan position of the satellite instrument

biases that vary depending on 
location or air-mass

simple flat offset biases that are 
constant in time

AMSU-A channel 7

HIRS channel 5

Bias correction:

https://orcid.org/0000-0003-0262-256X



Bias correction:

What we would like to quantify is: 

Bias  =  mean [ Yobs – H(Xtrue) ]

But in practice all we can monitor is : 

Bias  =  mean [ Yobs – H(Xb/a) ]

But sometimes NWP systematic errors can make it difficult to 
diagnose and correct observation biases



Data selection and quality control (QC):

The primary purpose of this is to ensure that the observations 
entering the analysis are consistent with the assumptions in the 
observations error covariance (R) and the observation operator 
(H).

Primary examples include the following:

• Rejecting bad data with gross error (not described by R)

• Rejecting data affected by clouds if H is a clear sky RT

• Thinning data if no correlation is assumed (in R)

• Always blacklisting data where we do not trust our QC!



Data selection and quality control (QC):

Often checks are performed using the forecast background 
as a reference. That is an observations is rejected if the 
departure from the background exceeds a threshold TQC:  

Yobs – H(Xtrue)  >  TQC

But sometimes large errors in the background can lead to:

• False rejection of a good observation

• Missed rejection of a bad observation



Data selection and quality control:
• False rejection of a good observation

The numerous failing observations are good, but a bad background is 
causing them to be rejected. We need these  observations to improve the 
analysis !



Data selection and quality control:
• Missed rejection of a bad observation

The radiance are contaminated by 
cloud (cold 5K) compared to the 
clear sky value. 

But our computation of the clear sky 
value from the background is also 
cold by 5K due to an error in the 
surface skin temperature. 

Thus our checking (against the 
background) sees no reason to 
reject the observation and it is 
passed!  surface

Cloud signal -5K

Model Surface error -5K



• observation operator 
(complex and expensive for radiances)

• background errors
(important due to vertical resolution)

• observation errors
(must be specified correctly)

• bias correction
(global impact of small bias)

• data selection and quality control
(false alarms and missed rejections)

Summary



Thanks


